Species diversity of Butterflies in South-Eastern part of Namdapha Tiger Reserve, Arunachal Pradesh, India

Janmejay Sethy^{1*}, Satyaranjan Behera² & Netrapal Singh Chauhan³

¹Wildlife Institute of India, Chandrabani, Post box-18, Dehradun, Uttarakhand, 248001, India ²Similipal Tiger Reserve, Myuarbhanj, Odisha ³Amity Institutes of Wildlife Sciences, Sector 125, Noida, UP, 201303

(Accepted 06 June, 2014)

ABSTRACT

A detailed study on the butterfly species diversity was carried out at Namdapha Tiger Reserve, in Changlong district, Arunachal Pradesh, during 2008-2009. A total of 1415 individuals' butterflies belonging to 113 species covering, 5 families and 73 genera of order Lepidoptera were recorded during the study period and also 15 rare species were recorded in present study. The family Nymphalidae, represented by (48 species) was the most dominant followed by Papilionidae (24 species), Lycaenidae (17 species) Pieridae (16 species) and Hesperiidae (8 species). From the conservation point of view, the study area is remained rich in flora and fauna species. The most represent families were Nymphalidae and the majority of the species collected were from the family of, Nymphalidae Papilionidae and Lycaenidae. Nymphalidae, Papilionidae, Pieridae and Hesperiidae, represents (42.5%, 21.2%, 15.1%, 14.1% and 7.1%) respectively species sampled in all transects. Overall the family composition Nymphalidae represent 393 (48) individuals followed by Papilionidae 339 (24), Lycanidae 320 (17), Peiridae 302 (16) and Hespiiridae 61(8) were recorded during the study periods.

Key words: Butterfly, Species, Diversity, South-Eastern, Namdapaha Tiger Reserve Arunachal Pradesh

INTRODUCTION

Butterflies belong to the order 'Lepidoptera' (scaly winged insect) which evolved 35 million years ago are regarded as one of the important components of biodiversity (New, 1991) and are the second largest order among insect, made up of approximately 1, 50,000 species so far known to the literature. These include moths (Heterocera) and butterflies (Rhopalocera), of which 17,820 are butterflies according to more recent estimate (Shields, 1989) although several estimate have been made from time to time, ranging from a low of 13,000 (Owen, 1971) to a maximum of 20,000 (Vane-Wright, 1978), earlier.

Butterflies are also widely recognized as potentially valuable ecological indicators (Gilbert 1984; Erhardt, 1985; Brown, 1991; Kremen, 1992). They are highly sensitive to change in temperature, humidity, and light levels that are typically affected by habitat disturbance (Janzen and Schoener, 1968; Ehrlich et al., 1972; Blau, 1980; Murphy et al., 1990; Speitzer et al., 1997; Bruzel and Elligsen, 1999; Balmer and Erhardt, 2000). Therefore, they have been identified as good indicators of environmental variation and quality (Gilbert 1984; Pyle, 1980; Brown, 1982 and Kremen, 1992) as they are sensitive to and directly affected by any alternation in their habitats, atmosphere, local weather and climate (Watt et al., 1968; Ehrlich et al., 1972; Heath, 1981; Rosenberg et al., 1986; Wiess et al., 1987; Dennis, 1993). In addition, butterfly diversity may serve as a surrogate for plant diversity because butterflies are directly dependent on plants, often in highly co-evolved situations (Ehrlich and Raven, 1964).

Butterflies are primary consumers in forest ecosystem (Rosenberg *et al.*, 1986) and more butterflies usually implies more vascular plant species on which female butterflies can lay eggs and use them as nectar sources.

The current rate of species extinction and habitat destruction is increasing alarmingly. Since the last decades, many of them are logged, cleared or converted into plantation (Groombridge, 1992; Padoch and Peluso, 1996; John, 1997; Laurance and Bierregaard, 1997).

As far as their biology has been extensively investigated, butterflies are among the best-known insect groups. Many authors have considered butterflies as being the best group of insects for examining the patterns and the distribution of terrestrial biotic diversity (Robbins and Pler, 1997).

Besides this aspect, butterflies can also be used as biological indicators in rural landscapes (Balletto, 1983; Dover, 1992; Groppali, 1995; Dover *et al.*, 1999; Croxton *et al.*, 2004; Fabbrie Scaravelli, 2002).There is an increasing body of evidence suggesting that connectivity and quality of habitats in agricultural and scopes have a significant effect on survival of animal species, including arthropods (Andow, 1991; Altieri, 1999; Landis *et al.*, 2000; Rossing *et al.*, 2003).

Study area

The Eastern Himalaya and the hills of NE India are recognized as a global biodiversity hotspot (Champian and Seth, 1968). While NE India occupies 8% of the country's area, it harbors 56% of its faunal diversity. Within this region, arguably the most biodiversity- rich state (the largest among the seven in North-east India,

*Corresponding Author's E-mail: beekiwild@gmail.com

covering 83,743 km²) is the state of Arunachal Pradesh (26°28' to 29°30'N and 91°30' to 97°30'E). The study was conducted within the 1985 km² Namdapha National Park (27°23' to 27°39'N and 96°15' to 96°58'E; Figure 1) in Arunachal Pradesh, India. The site harbours some of the northernmost tropical rainforests in the world (Proctor et al., 1998) and extensive dipterocarp forests. The elevation ranges from 900m to 4571m height with increasing elevation, there is a transition in habitat to subtropical broadleaved forests, subtropical pine forests, temperate broadleaved forests, alpine meadows and perennial snow. Though primary forests covered most of the park area, there are extensive bamboo and secondary forests. The park lies within the Indo-Myanmar global biodiversity hotspot (Myers et al., 2000) at the junction of the Palaearctic and Malayan biogeographic realms resulting in a highly diverse species assemblage. Arunachal is considered among the least developed and most remote is being lying in the Eastern Himalayan region.

Figure 1. Map of Namdapha Tiger Reserve.

METHODOLOGY

The study was carried out in 2008 and 2009, by sampling butterflies in ten different transect within different landscape. Sampling of butterflies was carried by taking species wise individual count of butterflies by direct sampling in fixed transect routes (line transect) following the 'Pollard walk' methodology proposed by (Pollard *et al.*, 1975; Pollard, 1977; Pollard and Yates, 1993) and adopted by various authors (Blair and Launer, 1997; Sreekumar and Balakrishnan, 2001a; Kunte *et al.*, 1999; Walpole and Sheldon, 1999; Arun, 2003).

Sampling of butterflies in tropical rain forests was done visually on these transects by count method: walking and counting the total number of individuals of each butterfly species on a line transect of 150m for spending 30 minutes in a stretch during sunshine in each route. In all 10 line transects were covered at each site totaling to 3 consecutive days. All the three strata (canopy, middle story and ground level) were sampled for butterflies with the help of binoculars, butterfly nets, a camera and two assistants. Voucher specimens of only those species were collected for identification that could not be identified in the field and identified the species in the field following the (Kehimker, 2009; Heeribal, 2001). Destructive sampling was kept to the minimum. Each site

was thus sampled thrice in each month for the two consecutive years 2008-2009. The time duration of each sampling was 30 minutes. In the present study, the "catch and release" method was used: the collected adults were identified in field and released at the end of the sampling. Samplings were carried out in sunny conditions at fixed time, walking on a fixed trajectory and scanning both sides of transect.

Statistical analysis

A. Shannon index - H': Species diversity was calculated using the Shannon Index, which combines the number of species within a site with the relative abundance of each species (Shannon, 1948; Magurran, 1988; Odum, 1997; Krebs, 1989).

$$H' = -\Sigma pi \ln pi$$

Here, pi is the proportion of the species in the total sample. The number of species (species richness) in the community and their evenness in abundance (or equitability) are the two parameters that define H'

B. Pielou's evenness index (equitability) or J': The species evenness is the relative abundance or proportion of individuals among the species. Evenness of species reveals how their relative abundance is distributed in a particular sample or site (Pielou, 1969; Magurran, 1988).

 $J' = H' / \ln S$

Here, S is the number of species present in the site. The value of J' ranges from 0 to 1. The less variation in communities between the species, the higher the value of J'. The butterfly species diversity was compared among sites with the Shannon and Evenness indices (Magurran, 1988). The species counts were then categorized in to four groups (e.g. Rare, Uncommon, Common and not rare) based on their availability or frequency of sighting. The successful identification of butterflies was done using the following literature: (Marshall and de Niceville, 1882; Moore, 1890,1905; Swinehore, 1905,1913; Evans, 1932; Talbot, 1930,1947;Wynter-Blyth, 1975; D' Abrera, 1982, 1985; 1986), Smith, 1989; Haribal, 1992; Kunte, 2000; Kehimker, 2008. The classification followed here is based on Ackery (1984).

RESULT AND DISCUSSION

During the study periods from August 2008 to December 2009, a total of 1415 individual butterflies were recorded in 10 different transect (Table 1). One hundred and thirteen species belonging to five families and including seventy one genera of butterflies were recorded during the study period. Pieris canidia (Linn.) was the most dominant species of Butterfly in terms of number of individuals (103) followed by Delias belladona (Fabr.) (100), Spindasis lohit (Hors.) (98), Tirumala septentrionis (Butler) (95), Euploea Sylvester (Fabr.) (94), Euploea muliciber (Cramer) (91), Polyura anthamas (Drury) (89), Euploea radamanthus (Fabr.) (86). is listed under Indian Wildlife (Protection) Act, 1972. The maximum number of species sampled, belong to family i.e. Nymphalidae (n=48) followed by Papilionidae (n=24), Lycaenidae (n=17), Pieridae (n=16), Hesperiidae (n=8) were recorded along the ten different sampling area from August 2008 to December 2009 (Table 2). Survey works were restricted only in

 Table 1. Butterflies species sampled and relative abundances in the sampled sites; numbers represent the sum of the individuals collected as a sum of 2009 seasons

Species	Transect						Total no				
	1	2	3	4	5	6	7	8	9	10	
Nymphalidae	155	43	32	21	17	15	24	36	27	23	393
Papilionidae	146	18	20	85	10	11	13	12	15	9	339
Peiridae	172	26	13	15	13	13	3	25	12	10	302
Lycanidae	127	23	24	14	26	33	35	11	14	13	320
Hespiiridea	4	12	5	11	2	6	5	8	5	3	61
Total	604	122	94	146	68	78	80	92	73	58	1415

Table 2. Percentage of butterfly's families sampled in South-Eastern part of Namdapha Tiger Reserve. (n=111).

Family Names	Species number	Percentage of	WPA-protected species			
		species	Schedule I	Schedule II	Schedule IV	
Nymphalidae	48	42.5%	2	12	1	
Papilionidae	24	21.2%	-	-	1	
Lycaenidae	17	15.1%	1	2	3	
Pieridae	16	14.1%	-	-	1	
Hesperiidae	8	7.1%	-	1	1	
Total	113	100%	3	15	7	

South-Eastern part of Namdapha Tiger Reserve. The most represent dominant families were Nymphalidae as well as the majority of the species collected from the family of, Nymphalidae Papilionidae and Lycaenidae. The family Nymphalidae, Papilionidae, Lycaenidae, Pieridae and Hesperiidae represents (42.5%, 21.2%, 15.1%, 14.1% and 7.1%) species respectively which was sampled 10 different transects (Table 2). Where the family Nymphalidae has been contributed maximum 43% of species composition, followed by Hesperiidae contribute less than 10%. Most of the species collected however showed a very low frequency of butterflies' sightings. Nevertheless several rare species were collected during the observation based on their occurrence and distribution in locality. Most of the family was well represented except Pieridae and Hesperiidae.

The occurrence of butterflies was seen to abundant from September to January. In conclusion butterflies in our environmental conditions seem to be poorly effective as landscape bio indicators (or largescale indicators), for their biological and ecological characteristics, including the high mobility of adults and the strong dependence from the microhabitat. Plant typology of the micro-habitat greatly influenced the richness of butterflies and showed to be very important for their conservation, including rare species. The value of the ecological compensation areas (including green lanes and weed margins) is especially important as they may be the only semi-natural habitats left in many rural areas. The architecture of the hedgerow (or in general of linear features) could be an important factor for the numeral species. Management of ecological compensation areas is crucial for Lepidoptera conservation, including conservation of rare species.

Some interventions for the protection of Lepidoptera fauna can be suggested, including improving of the floral diversity surrounding field, the promotion of low impact cutting of ecological compensation areas mainly during the flowering of the weeds and avoiding, when possible, chemical control of weeds at field borders (Fabbri and Scaravelli, 2002).

We also calculated different diversity index i.e. Shannon diversity, Simpson_1-D Evenness_e^H/S, Equitability_J, Dominance_D indices as a measure of diversity within the transects since these indices incorporate both species richness and abundance into a single value (Table 3). The Shannon's diversity index showed the same pattern with minor variations. The Simpson and Shannon J (evenness) indices revealed that in scrub jungle the individuals among species were not evenly distributed during the survey period indicating that some species were more abundant than the others. This reflects on the difference in the efficiency of different butterfly species to efficiently use the habitat. The abundance of individuals of a species at any given point on a temporal scale is again dependent on various biotic and abiotic environmental factors.

General species composition

Overall the family composition, Abundance and species richness of butterflies were recorded. i.e. Nymphalidae represent 393 (48) individuals followed by Papilionidae 339 (24), Lycanidae 320 (17), Peiridae 302 (16) and Hespiiridae 61(8) were recorded during the study periods (Figure 2).

Figure 2. Species composition of butterflies in South-Eastern part of Namdapha Tiger Reserve.

Eastern part of Namdapha Tiger Reserve.			
Species Diversity	Value		
Shannon_H	4.338		
Simpson_1-D	0.985		
Evenness_e^H/S	0.8046		
Equitability_J	0.9539		
Dominance D	0.015		

Table 3. Different diversity index of butterflies in South-

Present record of total 113 under schedule act showing that the area is rich in species in Southern part of Namdapaha tiger reserve indicates that the diversity of butterfly diversity and there is an urgent need to adapt butterfly species in this area has been increased to conservation policies. The reason for increase in diversity might conservations are, development of butterfly park, be due to the favourable tropical climate conditions, cultivation and protection of larval and nectar host plants availability

Table 4. Microhabitat and habitat types of butterfly's sampled plot in South-Eastern part of Namdapha Tiger Reserve.

Transect no/ Time	Can- opy cover	Ground cover	Habitat type	Habitat distur- bance	Hu- man activ- ity	As- pect	Slope	Eleva- tion	Topogra- phy	Soil
1 (6:30-9:10)	95	92	Mixed forest	1	1	East	20	377 m	Hill	Rocky
2 (7:10-9:15)	98	95	Mixed forest	0	1	West	35	486	Hill	Rocky
3 (7:15-9:05)	98	95	Mixed forest	0	0	East	40	716	Hill	Rocky
4 (7:00-9:10)	92	90	Mixed forest	0	0	East	60	1197	Hill	Rocky
5 (7:15-9:20)	98	95	Mixed forest	1	1	South	50	1172	Hill	Rocky
6 (7:10-9:30)	97	94	Dray mixed forest	0	0	South	35	1384	Hill	Sandy
7 (7:10-9:00)	96	98	Tropical ever- green forest	0	2	West	20	1107	Hill	Rocky
8 (7:00-9:10)	98	97	-do-	1	2	South	25	1093	Valley	Boul- ders
9 (6:45-9:15)	95	92	Semi ever green forest	0	1	North	15	1201	Valley	Boul- ders
10(6:55-9:00)	98	93	Tropical forest	0	1	North	19	1205	Valley	Rocky

Comparison of different microhabitats

Among all the sites, hill and undulating areas are the most interesting habitats, which observed many rare and endemic species. The wet seepage areas at the hilly are also an excellent place where many Pieridae and Papilionidae were found to be congregating in moderate number. The regenerating forest between Kherbari and Musala was not explored thoroughly; it was generally poor in species, though not necessarily in numbers of individuals (Table 4). Looking at the semi ever-green forest, most of the species found were characteristic of canopy with many species that are usually rare and only occasionally found at the lower level.

In conclusion butterflies in our environmental conditions seems to be very poorly effective as landscape bioindicators (or large-scale indicators), for their biological and ecological characteristics, including the high mobility of adults and the strong dependence from the microhabitat. Plant typology of the micro-habitat has been greatly influenced their richness of butterflies and showed to be very important for their conservation, including rare species. The value of the ecological compensation areas is especially important as they may be the only tropical ever green forest habitats left in many degraded patch areas. Management of ecological compensation areas is crucial for Lepidoptera conservation, including conservation of rare species. of more number of larval host plants and specifically used by these butterflies and provide vegetation cover of herbs, shrubs and trees for nectaring protection and maintenance.

Our data showed the micro-habitat within a site, including vegetation diversity, significantly affects the Lepidoptera richness. Also cardinal orientation of the transept, affecting the isolation intensity, could affect the Lepidoptera diversity and frequency catches but this conclusion is only preliminary.

Some interventions for the protection of Lepidoptera fauna can be suggested, including improving and promotion of low impact cutting of ecological compensation areas mainly during the flowering of the weeds and avoiding, when possible, chemical control of weeds at field borders (Fabbri and Scaravelli, 2002).

ACKNOWLEDGEMENTS

We would like to thank the Forest Department of Namdapha Tiger Reserve. We wish to acknowledge the kind Feld Assistants of the survey team who helped with all the logistics and transportation during the study. The authors are thankful to Mr. P.R. Sinha, Director, Wildlife Institute of India for his support and encouragement in conducting the study.

REFERENCES

- Ackery, P.R.1984. Systematic and faunistic studies on butterflies. PP 9-21. In Vane Wright, R.I. and P.R.Ackery(eds). *The biology of butterflies*. Symposium of the Royal Entomological Society of London. No 11 Academic Press
- Anon. 1991. Laws of Malaysia: Act A337 –Protection of Wildlife 1972 (Amendment) 1976, PU (A) 306/91. Kuala Lumpur:Percetakan Nasional Malaysia Berhad.
- Brown, K.S.1991. The conservation of insects and their habitats. Conservation of neotropical environment: Insect as indicators: 350-403.15th Symopsium of the Royal Entomological Society of London. September 1989. Academic Press, London, England.
- Croxton, P.J., Hann, J.P., Greatorex-Davies, J. N. and Sparks, T. H. 2004. Linear hotspots? The floral and butterfly diversityof green lanes.-Biological conservation, 121: 579-584.
- De Vries, P.J. 1987. The butterflies of CostaRica and their Natural History. Vol. 1. NewJersey: Princeton University Press.
- Dover, J.W., Sparks, T.H., Clarke, S., Gobett, K. and Glossop, S. 1999. Linear feature and butterflies: the importance of green lanes.- Agriculture Ecosystems and Environment, 80: 227-242.
- Eliot, J. N. (Ed.). 1992. The Butterflies of Malays Peninsula. (4th Ed.). Malayan Nature Society. Malaysia. Kuala Lumpur.
- Erhardt, A. (1985). Diurnal Lepidoptera: Sensitive indicator of cultivated and Abandoned Grassland. *Journal of Applied Ecology*, 22:849-861.
- Fabbri, R., and Scaravelli, D. 2002. Indagine preliminare sui Lepidotteri diurni lungo siepi in aziende agricole biologiche del forlivese e del cesenate.- Quaderno di Studi e Notizie di Storia Naturale della Romagna, 16: 81-94.
- Gilbert, L.E. 1984. The biology of butterfly

communities. *The biological butterflies:* 41-54. Academic Press, Landon, England.

- Groombridge, B. (Ed.). 1992. Globalbiodiversity: Status of the earth's livingresources. London: Chapman & Hall.
- John, A.G. 1997. Timber production andbiodiversity conservation I tropicalrainforest. (2nd Ed.). United Kingdom:Cambridge University Press.
- Laurance, W.F. and Bierregaard, R.O. 1997. Preface A crisis in the making. In:Laurance W. F. and R. O Bierregaard (Eds.). Tropical forest remnants

 ecology, management and conservation of fragmented communities. Chicago: Chicago University Press.
- Mahadimenakbar, M.D. 1999. Potential use of World Map for exploring aspect of spatial pattern in biological data: An introduction use on butterfly diversity assessment in Borneo. In: Hassan, S. T. S., I. Azhar, O. Dzolkhifli and A. S. Sajap. (Eds.). Entomology in Malaysia beyond 2000: Exploration, imploration and digitalization.
- Maruyama, K. and Otsuka, K. 1991. Butterflies of Borneo. Vol. 2, No.2. Tokyo: Tobishima Corporation.
- New, T.R. 1984. Insect conservation: an Australian perspective. Dordrecgt, W.Junk.
- New, T.R. 1991. *Butterfly conservation*. Oxford University Press.
- Otsuka, K. 1988. *Butterflies of Borneo*. Vol. 1. Tokyo: Tobishima Corporation.
- Owen, D.F. 1971. *Tropical Butterflies*. Oxford, Clarendon Press.
- Pyel, R.M. 1992. *Handbook for butterfly watcher*. Boston, Hougton Mifflin.
- Sparks, T.H., Hann, J.P. and Greatorex-Davies, J.N. 1999. The influence of field boundary structure on butterflies.- Aspects of Applied Biology, 54: 235-240.
- Vane-Wright, R.I. 1978. Ecological and behavioral origins of diversity in butterflies. In *Diversity in insect faunas*. Mound, L.A. and Waloff, N. (eds.) Oxford, Blackwell, 56-70.

Sethy et al.

Appendix 1. Checklist of Butterfly and their status and distribution in South-Eastern part of Namdapha Tiger Reserve

Name of family	Hesperiidae				
Common name	Scientific name	Status	Distribution		
Branded orange awlet	Bibasis oedipodae	UC	HP,UT,AP,NE		
Orange-tail awl	Bibasis sena	С	WG,AP,WB,UT		
White-banded awl	Hasora temintus	С	WG,SK,AP,NE,A&N		
Plain banded awl	Hasora vitta	UC	WG,SK,AP,NE,A		
Dark yellow-banded flat	Celaenorrahinus aurivittata	С	AS,AP,		
Tricoloured pied flat	Coladenia indrani	С	WB,SI,HP,AP,NE		
Spotted angle	Caprona agama	R	UT,MR,AP,NE		
Great swift	Pelopidas assamensis	UC	MR,MP,HP,AP		
Name of family	Papilionidae				
Common name	Scientific name	RA	Distribution		
Bhutan glory	Bhutanitis lidderdalei	R	SK,AP,MNP,NL		
White drangotail	Lamproptera curius	NR	AS,AP,		
Green drangotail	Lamproptera meges	UC	AS,AP,NL		
Glossy blue bottle	Graphium cloanthus	NR	J&K,AP,		
Common blue bottle	Graphium sarpedon	С	J&K,AP,NE,SI		
Great jay	Graphium eurypylus	NR	SK,AP,NE,A		
Common jay	Graphium doson	С	SI,MR,O,WB,UT,AP,NE		
Tailed jay	Graphium agamemnon	С	GJ,UT,AP,NE,A&N		
Fivebar swordtail	Graphium antiphates	С	SK,AP,WG,GOA		
Spot swordtail	Graphium nomius	С	GJ,MP,CH,UP,UT,AP		
Fourbar swordtail	Graphium agetes	NR	SK,APS		
Lesser mime	Chilasa epycides	R	SK,AP		
Common mime	Chilasa mime	NR	HP,AP,SI,NE		
Common mormon	Papilio polytes	С	TOI(INDIA)		
Red Helen	Papilio helenus	С	SI,UT,AP		
Great mormon	Papilio memnon	LC	WB,SK,AP,A&N		
Redbreast	Papilio alcmenor	NR	HP,AP,NE		
Common yellow swallowtail	Papilio machaur	NR	J&K,AP		
Paris peacock	Papilio paris	NR	SI,MR,ANP,O,CH,UT,SK		
Common peacock	Papilio polyctor	С	J&K,AP		
Common batwing	Atrophaneura varuna	NR	UT,AP		
Common rose	Atrophaneura aristolochiae	С	TOI(INDIA)		
Common bird wing	Triodes helena	NR	O,SK,AP,A&N		
Name of family	Pieridae				
Common name	Scientific name	RA	Distribution		
Chocolate gram yellow	Eurema sari	R	SK,AP		
Tree yellow	Gandaca harina	NR	SK,AP		
Tailed sulphur	Dercas verhuelli	NR	SK,NB,AP		

AJCB Vol. 3 No. 1, pp. 75-82, 2014

Yellow orange tip	Ixias pyrene	С	TOI(INDIA)
Great orange tip	Hebomoia glaucippe	С	PI,SK,AP,NE,A
Pale wanderer	Pareronia avatar	R	SK,AP,NE
Spot puffin	Appis lalge	NR	UT,AP,WG,GOA
Green-veined white	Pieris napi	NR	J&K,AP
Indian cabbage white	Pieris canida	С	TOI(INDIA)
Spotted sawtooth	Prioneris thestylis	NR	UT,AP
Great black vain	Aporia agathon	UC	K,AP
Hill jezebel	Delias belladona	С	HP,AP
Pale jezebel	Delias sanaca	NR	J&K,AP
Red-base jezebel	Delias pasithoe	NR	SK,AP,HILLS OF NE
Red-spot jezebel	Delias descombesi	NR	SK,AP
Painted jezebel	Delias lyparete	UC	UT,AP,NE,WB,O,AP,APP
Name of family	Lycaenidae		
Common name	Scientific name	RA	Distribution
Common gem	Poritia hewitsoni	UC	UT,AP
Common brownie	Miletus chinensis	NR	SK,AP
Forest pierrot	Taraka hamda	NR	SK,AP
Large oak blue	Arhopala amantes	С	UT,AP,WB,SB,GJ,MP
Aberrant oak blue	Arhopala absous	NR	SK,AP
Sliver streak blue	Iraota timoleon	UC	PI,GJ,UP,WB,AP,UT,NE
Yam fly	Loxura atymnus	С	UT,AP,WB,PI,MP
Common imperial	Cherita freja	С	UT,AP,WG,
Spotted royal	Tajuria maculatta	NR	SK,DJ,AP,NE
Fluffy tit	Zeltus amasa	UC	WG,SK,AP,NE
Large guava blue	Dendorix perse	NR	SI,HP,AP,O
Plane	Bindahara phocides	NR	WG,SK,AP
Long-banded silverline	Spindasis lohit	С	UT,AP,WB,PI,MP
Golden sapphire	Heliophorus brahma	NR	UT,AP,WB,
Plum judy	Abisaran echerius	С	PI,HP,AP,NE,GJ,WB
Striped punch	Dodona adonira	С	SK,AP,NE
Mixed punch	Dodona ouida	NR	UT,AP,NE
Name of family	Nymphalidae		
Common name	Scientific name	RA	Distribution
Dark blue tiger	Tirumala septentrionis	С	PI,MH,O,HP,AP
Double-branded crow	Euploea sylvester	С	SI,MH,SK,AP,NE
Striped blue crow	Euploea muliciber	С	HP,AP,NE,SI
Blue-spotted crow	Euploea midamus	С	HP,AP,
Magpie crow	Euploea radamanthus	С	SK,AP,NE
Common nawab	Polyura anthamas	С	PI,UT,AP,NE,AM
Stately nawab	Polyura dolona	R	HP,AP,NE

AJCB Vol. 3 No. 1, pp. 75-82, 2014

Great nawab	Polyura eudamippus	С	UT,AP
Red caliph	Enispe euthymius	NR	SK,AP,NE
Jungle glory	Thaumantis diores	UC	SK,AP,NE
Manipur glory	Sticopthalma sparta	R	M,NL,AP
Great evening brown	Melanitis zitenius	R	WG, UT, AP, NE
Bamboo tree brown	Lethe europa	С	SI,MP,JK,O,WB,UT,AP,NE
Common tree brown	Lethe rohria	С	SI,MP,JK,J&K,AP,NE
Banded tree brown	Lethe confuse	С	J&K,AP,NE
Straight-banded tree brown	Lethe verma	С	J&K,AP,NE
Dusky diadem	Ethope himachala	R	SK,AP
White bar bush brown	Mycalesis anaxias	UC	SI,SK,AP
Dark-branded bush brown	Mycalesis mineus	С	MP,WB,HP,AP,NE
Common five ring	Yathima baldus	С	PI,GJ,MP,HP,AP
Red lacewing	Cethosia bibles	С	SK,AP,NE,A&N
Leopard lacewing	Cethosia cyane	UC	UT,AP,NE,BH,WB,O,EG
Large silver stripe	Childrena childreni	С	J&K,AP,NE
Indian fritillary	Argyreus hyperbius	С	J&K,AP,NE,RJ
Cruiser	Vindula erota	NR	WG,SK,AP,NE,A
Large yeoman	Cirrochroa aoris	С	SK,AP,NE
Common yeoman	Cirrochroa tyche	С	SK,AP,NE,WB,A
Common leopard	Phalanta phalantha	С	TOI
Green commodore	Sumalia daraxa	NR	UT,AP,NE,WB
Commander	Moduza procries	С	PI,MP,UT,WB,NE,A
White commodore	Parasarpa dudu	R	SK,AP,NE
Common sergeant	Athyma perius	С	HP,AP,NE,PI,MP
Studded sergeant	Athyma asura	R	HP,AP,NE
Small yellow sailer	Neptis miah	NR	SK,AP,NE
Common sailer	Neptis hylas	С	TOI
Yellow sailer	Neptis ananta	R	HP,AP,NE
White-edged blue baron	Euthalia phemius	NR	SK,AP,NE,WB
Gaudy baron	Euthalia lubentina	С	PI,WB,HP,AP,NE
Blue duchess	Euthalia duda	R	SK,AP,NE
Panther	Neurosigma siva	R	SK,AP,NE
Common map	Cyrestis thyodamas	UC	J&K,AP,NE,SI
Common maplet	Chersonesia risa	UC	UT,AP,NE
Tabby	Pseudergolis wedah	С	HP,UT,SK,AP,NE
Painted courtesan	Euripue consimilis	R	SI,WG,EG,UT,AP,NE
Circe	Hestina nama	NR	HP,AP,NE
Indian red admiral	Venesa indica	С	SI,J&K,AP,NE
Wizard	Rhinopalpa polynice	UC	AS,AP,NL,MN
Orange oak leaf	Kallima inachus	NR	J&K,AP,NE,WB
Indian white admiral	Limenitis trivena	R	SI,WG,EG,UT,AP,NE

NR- Not Rare ; R- Rare; C- Common ; UC- Uncommon

NOTE- Distribution in India : HP- Himanchal Pradesh, UT- Uttaranchal, AP- Arunachal Pradesh, NE- North East, WG-Western Ghat, WB- West Bengal, A&N- Andaman & Nicobar, SK-Sikkim, APP-Andhra Pradesh, AS-Assam, SI- South India, MR/MH-Maharashtra, MP- Madhya Pradesh, MNP- Manipur, NL- Nagaland, J&K- Jammu & Kashmir, O-Orissa, GJ- Gujarat, CH- Chhattisgarh, UP- Uttar Pradesh, TOI- Throughout India, PI-Peninsular India, GOA, DJ-Darjeeling, RJ- Rajasthan.